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Quarter Wavelength Ceramic Combline Filters

Hui-Wen Yao, Member, IEEE, Chi Wang, Student Member, IEEE, and Kawthar A. Zaki, Fellow, IEEE

Abstract— A rigorous method for analysis of coupled dielec-
tric quarter wavelength combline resonators is presented. The
resonant frequencies and coupling coefficients of the resonators
coupled by different coupling structures are investigated. A filter
design technique based on the results of numerical analysis is
described. A slot coupled filter and a monoblock elliptic function
filter are designed. Excellent experimental results verify the
theory.

1. INTRODUCTION

HE RAPID EXPANSION of mobile communication mar-

ket demands a huge amount of compact and inexpensive
hand-held communication sets. Reducing filter’s size and cost
are very important for a high quality and low cost hand-held
set. One of the most suitable ways of miniaturizing the filters
and reducing the cost is to use high dielectric constant and
low loss ceramic material in quarter wavelength combline type
filters [1]-[4]. '

An inhomogeneous dielectric block combline filter was
first introduced in [1], where quarter wavelength dielectric
combline resonant blocks are coupled by unplated full-through
air grooves. A similar inhomogeneous dielectric monoblock
filter, using full-through air holes to provide the required
interresonator couplings, is presented in [3]. In both cases,
the couplings between adjacent resonators are computed using
the finite difference method by treating the coupled resonators
as coupled paralle]l TEM transmission lines. This treatment is
valid only when the air grooves extend through the dielec-
tric and the operating frequency is well below the cut-off
frequencies of all higher order modes of the coupled lines.
Another drawback of the method is the difficulty of obtaining
convergent results when the dimensions of air grooves are
very small [1]. In addition to the full-through air grooves,
irises between resonators are also employed in construction
of quarter wavelength combline filters in [4], where the iris
dimensions are determined experimentally. '

To make accurate and efficient designs of high performance
quarter wavelength dielectric combline filters, investigation
of new coupling structures and precise computation of the

coupling coefficients are desired. In this paper, a full wave:

method [6] is applied to analyze the resonant performance
of a dielectric combline cavity perturbed by a partial height
air groove and to compute the couplings between two quarter
wavelength resonators coupled by different coupling structures

such as partial or full height air grooves, air holes, and

coupling irises. Design of quarter wavelength combline filters
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Fig. 1. Schematic structure of two dielectric quarter wavelength combline
resonators coupled by a partial height air hole.
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Fig. 2. Configuration of a general off-center cylindrical object in a rectan-
gular waveguide.

is carried out and constructed. Expermental results verify the
validation and accuracy of the method.

II. ANALYSIS

A schematic structure of two dielectric combline resonators
coupled by a partial height off-center air hole is shown in
Fig. 1. The air hole could be replaced by an air gap, a slot, or
other coupling structure. Since the dielectric constant of the
material usually is high (e, > 20), the electromagnetic fields
are trapped inside the material and the unmetalized top surface
of the structure can be viewed as a perfect magnetic conducting
(PMC) surface when dealing with the numerical solution.
Without the coupling structure, the resonators will resonate

. at quarter wavelength and there will be no coupling between

resonators due to the electric-magnetic phase cancellation of
quarter wavelength coupled lines [5].

The key of solving the problem is to acquire the generalized
scattering matrix of a general off-center cylindrical object in a
rectangular waveguide with the top surface of PMC as shown
in Fig. 2. In this paper, the general cylindrical object could be
either a full-through metal post representing the resonator or

- an air hole representing the coupling structure.
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Similar to [6], the structure is divided into a cylindrical inter-
action region (p < a) and two waveguide region Wy and W,
by introducing an artificial cylindrical boundary at p = a. The
cylindrical region could be viewed as a cylindrical object in a
radial waveguide where the cylindrical object is not concentric
with the main waveguide. Two coordinate systems (p, ¢, )
and (p1,d1,y) can be established in terms of the center of
the main waveguide and the center of the cylindrical object,
respectively. The eigenmodes in each coordinate system are
TE, (h) modes and TM,, (e) modes, where the eigenfields
can be solved in terms of the y-components of the H-field
and E-field, respectively. A complete set of the eigenmodes,
which is necessary for solving the asymmetric problem shown
in Fig. 2, should include the two orthogonal solutions—sin(¢)
dependent solutions (p = s) and cos(¢) dependent solutions
(p = o).

The y-component field of two orthogonal TE, modes can
be solved as

= Zn(Enp) PR (P hym k) = s,c
(1a)

JwpHER (0, ¢.9)

with
ifp=c
ifp=s (1)
where h,., (k" ,y) and k! are y-dependent eigenfield and
wave number; &% = k2e, — k" Z, (& p) represents Jy, (Emp)
or Y, (&,p)—the first kind or the second kind of Bessel
functions if £2, > 0 and I,,(|&n|p) or Kn(|€m|p)—the first
kind or the second kind of modified Bessel functions if Ei <0,
respectively.

The y-component field of TM, mode can be expressed as

Eyam(0.0,y) = Za(E5,0) 20 (D) eym (ks y) p=s,c
(2a)

where

q)ﬁe((ﬁ):{sin(nqﬁ) n = 21, ifp=s

2, ifp=c (2b)

1,

cos(ng) m =0,

where ey, (kg,,y) and k¢, are y-dependent eigenfield and
wave number; £¢. = ke, — kS .

hym(kR . y) and eyn,(kS,,y) are determined only by the
structure in y-direction which can be generally considered as
a multilayer parallel plane bounded in y-direction. For one-
layer (uniform) and two-layer parallel planes with PMC at its
top and PEC (perfect electrical conductor) at its bottom, the
solutions are given in the Appendix.

The total fields in the cylindrical region can be expressed
as a superposition of the complete set of the eigenmodes
including the out-going waves (.J,, or I, dependent waves)
and inner-going waves (Y, or K,, dependent waves) similar
to (1) in [6].

Enforcing the boundary conditions at boundary p; = rg
yields the following equations

{E—I}I(l)lu(ﬁlay) - E}(p1a¢1ay)}P1:To =0 (3a)
{th(plﬂqslvy)_Htl(pla(ﬁlay)}lh:?‘o =0 (3b)
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Fig. 3. S-matrix network representation of the coupled structure.

where the subscript ‘4’ represents the transverse fields with
respect to the y-direction; the superscript ‘I’ and ‘II’ represent
region I and region II as shown in Fig. 2. When region I is a
perfect conductor, the fields in the region will be all zeros.

Taking the cross inner products to the above equations
and applying the mode orthogonality among the modes with
different p variations, one may obtain

It m 1 [Cp
[[MC]H’ [MD]n’] Dﬁ
n/
=0 n’:0,1,2,---N¢, (4a)
with
CII {C;IIYZ:L(I’ ]-a"'aNy; P =8,¢ q:h’e}T
(4b)
/II lpq, T
{D s = 1,...’Ny; P =8¢ q:h,e}
(40)

where Ny and N, are the maximum mode index in ¢ and y
directions, respectively C/7?% and D'TP7 are field coefficients
of a given eigenmode related to the outer-going waves and
inner-going waves in region II in terms of the local coordi-
nate system (p1, ¢1,y), respectively, [MEF],, and [MJ], are
matrices determined by the self inner products and the mutual
inner products.

The set of matrix equations may be further expressed in a
new matrix form as

CIII
[[Mc][Mp] [D,n} =0 (5a)
with
(M1
(MY = ML ’
0
- [M},I]Nda
L=C,D (5b)
r C/II D/II
A 3
ni Ci NI Dyt
cH= . : DM = : (5¢)
C/II D’Ji\}

From the uniqueness of the solutions of Maxwell’s equa-
tions, the fields at the points outside the region of the cylin-
drical object can be expanded by the eigenmodes in either
(p,#,y) or (p1,¢1,y) without changing the properities of
the fields. Using this fact in conjunction with the addition
theorems for Bessel functions [7] [8], the following eigenfield
transformations for TE, modes and TM, modes between
the two parallel shifted cylindrical coordinate systems can be
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derived as
[bs,’:] [[qu [Fme;ﬁ"J
—psh | T [FA] [FL] [-bsh
b/ch
=[F"| "M, | for TE, modes
~b3
(62)
b | _ [1Fe] [Fal] [bm
bm | P [Fall [bm
blce
=[F?] b',’_é'e] for TM,, modes
m
(6b)
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Fig. 6. (a) Frequency shift and (b) coupling coefficients of quar-
ter wavelength rods coupled by partial length off-center air  holes.
2a/Am = 0.1432,79/a = rp/a = 0.4, L/a = 1.0667,¢, = 80, and
fo = 0.8 GHz.

where
sq cq
sq Aom . acq . A1
= . ; m =
sq cq
a'N¢m aN¢m
/
a=bb; q=he (6¢)

raq 'pg g
b5, and b7 could be CZi and C;7 or DB and D

'm?

respectively, where CT7 and DE?, are field coefficients of the
eigenmode in coordinate system (p, ¢,y) and C'Z and D'5%
are field coefficients of the eigenmode in coordinate system

(P1, 91, 9).

The elements of the matrices are given by

(FL)on' = by Ay (€2, po) cosn/ g
(chc)nn’ = 5n—n'[@n—n'(fgnpq) COS(n _ n')¢0
+ Aps pngns (€L, 00) cos(n + n’)¢0] ‘
(FL)ons = bt At pnr (€2, p0) sin 1’ o
(chs)nn’ =bp—n' [—Sf’n—n’ (gglpo) Sin(n — n’)qﬁo
+ A Pnn (§p0) sin(n + n') o]
(FL)pny = et [n—n (€L p0) sin(n — 1Yo
+ A Ptns (€F.00) sin(n + ') o]
(ng)nn’ = ‘Sn—n’[ﬂon-—n’( 4 po)cos(n — nl)¢o

| — A @rtns (€00) cos(n +1')go]  (Ta)
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Fig. 7. (a) Frequency shift and (b) coupling coefficients of
quarter wavelength rods coupled by - partial length air gaps.

2a/Am = 0.0578,r0/a = 0.275, L = 2a,¢» = 38.6, and fo = 0.915
GHz.

where
Jn( q po) if Z, € {Jnr,Yn/}
n (€3 = m . 7b
on (& p0) {In(lfi’nlpo) if Zpi € {In, Ko} (7b)
_ 1 if Z, € {Jnl,Ynl,Kn/}
= { (=D if Zy = Ly 7o)
P (_1)71’ if Zn € {Jn’ayn’} 7d
Bn {1 if Zpy € {Iy, K} (79)

For the configuration shown in Fig. 2, po = x¢ and ¢y = 7 /2.

By using (5) and (6), the scattering from the off-center
cylindrical object in the coordinate system (p,¢,y) can be
acquired as

11
(B G | =0 ®

where C™ and D™ are field coefficient vectors of all the
eigenmodes in region II in terms of coordinate system (p, ¢, y).
The elements of the transformation matrix [Tg] are either the
elements of [F¢]~! and [F?]~! or zeros depending on the
mode arrangement. Obviously, [Tr] will be an identity matrix
if two coordinate systems are concentric.

Following the same procedure in [6], the generalized S-
matrix [ST] of the metal post and [SC] of the air hole
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Fig. 8. (a) Frequency shift and (b) coupling coefficients of quar-
ter wavelength rods coupled by air filled and dielectric filled slots.
2a/Ap, = 0.1432,709/a = 0.3333, t/a = 0.127,¢, = 20, and fo = 0.8
GHz.
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Fig. 9. An equivalent circuit of a general bandpass filter.

can be obtained by enforcing the boundary conditions on
the artificial cylindrical boundary p = a and applying (8).
The solution exhibits the same convergence as presented in
[6].

If the coupling structure is a partial height air gap or a
slot instead of an air hole, its generalized S-matrix [SC]
can also be readily solved by conventional mode matching
method.

With the knowledge of generalized scattering matrices of
all the discontinuities involved in the coupled structure, the
cigen equations for the natural resonant frequencies can be
derived from Fig. 3 by applying the cascading procedure using
S-matrices [9] in conjunction with the termination conditions.
'Two natural resonant frequencies f. and f,,, corresponding to
PEC and PMC at the symmetrical plane of the structure, can
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Fig. 10. Measured responses of three-pole slot coupled quarter wavelength dielectric combline filter.
be acquired from the equations, and the coupling coefficient o metallized hole
can be computed as [10] coupling air hole
f = fg — fgl © tuning air h coupling air hole
2+ 13
k > 0 represents that the coupling is mainly contributed by the
magnetic fields; k <0 indicates that the electric field coupling
is dominant. ] —etallized
The frequency shift due to the loading of coupling may be B Gueface

defined as '
A — f”‘ - fO

fo
where fj is the resonant frequency of the quarter wavelength
resonator without the loading effect; f,. = 0.5(f. + fi) is the

midfrequency of the coupled resonators.

(10)

III. RESULTS

A. Resonant Frequency and Coupling

A dielectric combline cavity usually resonates at the fre-
quency of a quarter wavelength. The resonant frequency could
be tuned by making an air hole in the cavity. Fig. 4 shows the
tunability using air holes with different heights and locations.
In general, an air hole shifts the resonant frequency higher. The
closer the air hole to the resonant rod, the larger the frequency
shift.

Fig. 5 presents the midfrequency shift and the couplings
of two quarter wavelength rods coupled by partial height

2w ﬁ
\

Configuration of a monoblock 4-pole elliptic function filter.

2w

Fig. 11.

air holes varying the radii, where \,, is the wavelength in
the medium at frequency fo. Also presented in the figure

- are the couplings of full through air hole (d/\,, = 0.25)

computed by the finite difference method in [3]. Fig. 6 shows
the results of two resonators coupled by a partial height off-
center air hole. As expected, the coupling decreases with the
increase of the off-set of the coupling hole. Fig. 7 gives the
results of the frequency shift and the coupling coefficients
of two coupled resonators by rectangular air gaps with fixed
distance between the resonators. As indicated in [2], the figure
shows that the couplings increase with increasing the degree of
inhomogeneity, i.e., the height and the thickness of the gaps.
However, the increase of coupling tends to “saturate” while
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Fig. 12. 1Ideal response of the 4-pole elliptic function filter.

the midfrequency shift continues to increase. Both air hole
and air gap provide only the magnetic (positive) coupling. To
realize the electric (negative) coupling as required in design
of elliptic function filters, irises have to be used. The results
using iris as coupling structure are presented in Fig. 8, where
the irises are opened from the unmetalized side of the coupled
cavities. As the figure shows, the relative dielectric constant
of the material filling in the irises greatly affects the coupling
properties.

B. Filter Design

An equivalent circuit of a general bandpass filter is shown
in Fig. 9, where M,, is the mutual inductance between res-
onator ¢ and j which is related to the coupling coefficient
k;; by k,, = M;,/L. For given specifications of a filter,
the required couplings could be obtained by synthesis [11].
The dimensions of coupling structures can be determined by
the method presented in the last section according to the
desired coupling values. In addition to providing coupling,
each coupling structure also contributes loading to each of
its coupled cavities. As shown previously, the loading makes
each cavity resonate at a higher frequency. In order to have
all the cavities resonate at filter’s center frequency fo when
coupled together, each individual cavity has to be designed at
a lower frequency to compensate for the loading effect of the
couplings. For cavity ¢, it can be readily proved [4] that the
resonant frequency should be designed at

for = fo 1.0—ZAL~] i#£lorn (11a)
J

fo mfo| 10— A0 =D A, i=lorn (11b)
J

where A;; is the frequency shift due to the loading of
interresonator coupling and can be calculated by the mode
matching method; A, is the contribution of the input/output
loading and may be determined experimentally.

As the application of the accurate analysis and design
technique, a slot coupled quarter wavelength combline three-
pole Tchebyscheff filter with center frequency of 0.915 GHz
and bandwidth of 27 MHz is designed and constructed. The
measured results without tuning the dimensions of the slots
and the length of the middle resonator are presented in Fig. 10
showing excellent response with required center frequency and
bandwidth. The average realized un-loaded @) is estimated to
be 250. Another example is the design of a monoblock 4-pole
elliptic function filter with center frequency of 0.915 GHz and
bandwidth of 30 MHz. The configuration of the filter is shown
in Fig. 11. The three full through air holes in the figure are
used to provide the required magnetic couplings, and the slot is
applied to provide the electric coupling. The loading effect of
the input/output is compensated experimently by two partial
height air holes. The ideal response of the filter is given in
Fig. 12.

IV. CONCLUSIONS

A full wave method is developed to analyze the resonant and
coupling properties of quarter wavelength dielectric combline
resonators coupled by different coupling structures. The tech-
nique provides an accurate and efficient way for designing low
loss and small size combline filters for mobile communication
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Fig. 13. Configuration of a two-layer parallel plane.

applications. The accuracy and validation of the method are
verified by experiments.

APPENDIX

Fig. 13 shows the configuration of a two-layer parallel plane
waveguide bounded in y direction with PMC at the top surface.
When €1 = €2 = ¢, the structure becomes a one-layer
parallel plane waveguide. The eigenmodes existing in the
structure are:

TE? mode:

For one-layer case

hym (kL y) = sin(kly) (AD)
n (2m-—Dm
=T 7 =1.2. ... A2
b= m=12, (a2)
For two-layer case
(DR
Sinlln 9. 0<y<h
sin(ky,’" b
hym (K, ) Clssf[k@)h (1)_ ) (A3)
o by <y<b
cos[k" (by — b)]
with the characteristic equation
kDR cot(kDRb, ) = kD! tan[kP* (b — b)]  (Ad)
k(2)67’1 - (kv(%)h)z = k(2)€r2 - (k'I(’IZL)h)Q (A5)
TM? mode:
For one-layer case
eym(kry, y) = cos(kr,y) (A6)
2m - 1)m
e — T 7 =1,2,--- A7
K = m=12, (A7)
For two-layer case
kS
Lt gy,
rl
o) =4 C‘?S([kz’;)e(l)_ . (A8)
= ERm Iy <y<h
€r2 sinfkm’ (b1 — b))
with the characteristic equation
ik,(pe tan(k{D%h,) = —ikfg)e cot[k{De(by — b)] (A9)
€r1 €r2
ke — (KV9)? =k3enp — (ED°)2. (A10)
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